Références

AVERBUCH-POUCHOT, M. T. (1979). J. Solid State Chem. A paraître.

AVERBUCH-POUCHOT, M. T., DURIF, A. & GUITEL, J. C. (1977). Acta Cryst. B33, 1431–1435.

Acta Cryst. (1979). B35, 1444–1447

BLUM, D., AVERBUCH-POUCHOT, M. T. & GUITEL, J. C. (1979). Acta Cryst. B35, 726–727.

MAIN, P., GERMAIN, G. & WOOLFSON, M. M. (1970). MULTAN. A Computer Program for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. de York, Angleterre, et Louvain, Belgique.

Structures de Deux Phosphotellurates: $Te(OH)_6.2(NH_4)_2HPO_4$ et Te(OH)₆.Na₂HPO₄.H₂O

PAR A. DURIF, M. T. AVERBUCH-POUCHOT ET J. C. GUITEL

Laboratoire de Cristallographie, CNRS, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 8 novembre 1978, accepté le 5 mars 1979)

Abstract. Te(OH)₆. Na₂HPO₄. H₂O: hexagonal, P6₃, a = 5.908 (3), c = 15.09 (1) Å, Z = 2, $D_x = 2.83$ Mg m⁻³. Te(OH)₆. 2(NH₄)₂HPO₄: triclinic, P1, a =11.15 (1), b = 6.484 (3), c = 6.329 (4) Å, a =118.15 (1), $\beta = 105.80$ (1), $\gamma = 84.36$ (1)°, Z = 1, $D_x =$ 2.11 Mg m⁻³. The crystal structures of these two salts have been determined (with final R values of 0.020 and 0.037 respectively). The main feature of these two atomic arrangements is the coexistence of two different types of anions [Te(OH)₆ and PO₄] in the unit cell.

Introduction. Ces deux sels se préparent facilement en mettant en solution dans l'eau des quantités stoechiométriques des deux constituants: acide tellurique $Te(OH)_6$ et monophosphate acide de l'alcalin. La solution obtenue est portée quelques minutes à l'ébullition puis abandonnée à température ambiante. Au bout de quelques jours apparaissent les premiers cristaux, dans le cas du sel de sodium sous forme de bipyramides ou de plaquettes hexagonales, dans le cas du sel d'ammonium sous la forme de prismes tricliniques courts.

Le sel de sodium est hexagonal avec les dimensions de maille rapportées dans l'Abstract. Le Tableau 1 donne le dépouillement d'un diagramme de poudre de ce sel, tandis que le Tableau 2 fournit celui du sel d'ammonium. Les dimensions de la maille triclinique de ce dernier sel figurent dans l'Abstract.

Te(OH)₆. Na₂HPO₄. H₂O. Le cristal utilisé était une bipyramide hexagonale trapue de $\frac{12}{100}$ mm de hauteur totale et d'un diamètre équivalent. 4731 réflexions ont été mesurées en utilisant la longueur d'onde de l'argent ($\lambda K_{\alpha_1\alpha_2} = 0,5608$ Å) monochromatisée par une lame de graphite. Chaque réflexion était mesurée dans un domaine angulaire de 1,40° en balayage ω , avec une vitesse de 0,02° s⁻¹. A chaque extrémité de ce domaine, le fond continu était mesuré durant dix secondes. Les mesures s'étendaient de 4 à $35^{\circ}(\theta)$. Aucune variation significative des intensités des deux réflexions de référence 306 et $\overline{306}$ n'a été observée durant les mesures. De cet ensemble de 4731 réflexions, on a retiré 883 réflexions indépendantes.

Compte tenu des dimensions du cristal et de la longueur d'onde utilisée aucune correction d'absorption n'a été effectuée.

Te(OH)₆.2(NH₄)₂HPO₄. Dans ce cas le cristal utilisé était un fragment de prisme triclinique rendu approximativement cubique avec une arête moyenne de $\frac{11}{100}$ mm. Les conditions expérimentales sont sensiblement les mêmes que pour le cristal précédent à l'exception du domaine de balayage réduit ici à 1,20° et de l'angle limite de mesure, ici 30° (θ). Les deux réflexions de référence (214 et 214) n'ont subi aucune variation significative durant la mesure des 3896 réflexions. Ici comme dans le cas précédent et pour les

Tableau 1. Dépouillement d'un diffractogramme de $Te(OH)_6$. Na₂HPO₄. H₂O effectué à longueur d'onde du cuivre $K_{\alpha_1\alpha_2}$

Les intensités son	it les hauteurs des	pics au dessus	du fond continu.
--------------------	---------------------	----------------	------------------

h k l	d _c	d _o	I_o	h k l	d_{c}	d_o	I_o
002	7,54	7,54	1000	202	2,423	2,423	25
100	5,12	5,12	17	114	2,326	2,326	99
101	4,85	4,85	234	203	2,280	2,280	57
102	4,23	4,23	343	106	2,257	2,257	77
004	3,772	3,772	789	204	2,117	2,117	21
103	3,587	3,587	314	107	1,987	1,987	72
104	3,036	3,036	24	205	1,951	1,952	28
110	2,954	2,955	91	210	1,934	1,934	6
112	2,751	2,752	34	116	1,915	1,915	90
105	2,599	2,598	46	008	1,886	1,886	10
113	2,547	2,546	50	212	1,873	1,873	22
006	2,515	2,515	31				

© 1979 International Union of Crystallography

Tableau 2. Dépouillement d'un diffractogramme de $Te(OH)_6.2(NH_4)_7HPO_4$

Les conditions expérimentales sont celles décrites pour le Tableau 1.

h k l	d_c	do	I _o	h k l	d_c	do	I_o
100	10,72	10,72	62	12Ĩ	3,183	3,183	42
010	5,71	5,72	18	1 I Ž	3,164	3,163	21
001	5,39	5,39	75	3 Ī O	3,079	3,079	12
11Ī	5,28	5,29	81	012	3,045	3,045	8
110	5,12	5,12	78	310	2,982	2,980	1
110	4,97	4,97	22	111	2,962	2,961	2
111	4,41)	4 4 1	70	2 2 Ī	2,908	2,907	1
20Ī	4,41	4,41	/0	020	2,857	2,855	2
21Ī	4,30	4,30	26	102	2,790)	2 787	2
2Ī0	3,980	3,981	14	120	2,785	2,707)	2
210	3,841	3,839	100	122	2,746	2,746	24
300	3,573	3,573	28	312	2,709)	
2 Ī 1	3,427	3,426	18	311	2,708 }	2,706 }	1
30 Î	3,410	3,410	26	202	2,704 J)	
201	3,390	3,386	15	400	2,680)	
Ī11	3,265	3,264	32	0 2 Ž	2,678 }	2,679	15
02Ī	3,218	3,219	29	301	2,678))	

mêmes raisons aucune correction d'absorption n'a été effectuée.

En ce qui concerne $Te(OH)_6$. $2(NH_4)_2HPO_4$, l'exploitation de la fonction de Patterson permet la localisation de l'ensemble du motif. Quelques cycles d'affinement (Prewitt, 1966) amènent le résidu cristallographique à la valeur de 0,043 pour l'ensemble des 3896 réflexions mesurées. Ce même facteur est égal à 0,037 pour 3847 réflexions, telles que $(|F_o| - |F_c|)/\sigma < 1$ 6.*

Pour Na, HPO_4 . Te(OH)₆. H₂O, seule la position des atomes de tellure et phosphore a pu être déterminée à l'aide de la fonction de Patterson. Plusieurs synthèses de Fourier successives ont été nécessaires pour trouver l'emplacement de tous les atomes de l'arrangement.

Après affinement des paramètres des positions atomiques, le résidu cristallographique est de 0,032 pour les 883 réflexions indépendantes mesurées et de 0,020 pour 845 réflexions telles que $(|F_o| - |F_c|)/\sigma <$ 4.*

Les Tableaux 3 et 4 donnent respectivement les coordonnées des positions atomiques ainsi que les facteurs thermiques isotropes B_{eq} de Te(OH)₆. 2(NH₄)₂-HPO₄ et de Te(OH)₆.Na₂HPO₄.H₂O, correspondant aux derniers cycles d'affinement effectués avec 3847 plans pour le premier sel et 845 plans pour le second.

Discussion. $Te(OH)_6 \cdot 2(NH_4)_2HPO_4$. La Fig. 1 représente la projection de la structure sur le plan ab. Il s'agit d'un édifice cristallin tridimensionnel. Les atomes de tellure à l'origine de la maille possèdent un voisinage octaédrique centrosymétrique pratiquement régulier. Les distances Te-O et P-O dans les tétraèdres PO₄ (Tableau 5) sont de l'ordre de celles trouvées dans d'autres tellurates et phosphates.

Tableau 3. Paramètres des positions atomiques $(\times 10^4)$ et B_{eq} de Te(OH)₆. 2(NH₄)₂HPO₄

	x	у	z	$B_{\acute{e}q}(\dot{A}^2)$
Te	0	0	0	1,19
P	3246,3 (5)	3524,1 (9)	8462 (1)	1,33
N(1)	2201 (2)	7016 (4)	4266 (5)	2,82
N(2)	3903 (2)	516 (4)	2266 (4)	2,70
O(1)	1829 (2)	3698 (4)	7845 (4)	1,63
O(2)	3671 (2)	1082 (3)	6943 (4)	2,27
$\tilde{O}(3)$	3723 (2)	5245 (4)	7674 (4)	2,17
O(4)	3834 (2)	4407 (4)	1242 (4)	2,09
$\hat{O}(5)$	16 (2)	1535 (4)	8080 (4)	2,54
0(6)	1138 (2)	2380 (4)	2755 (4)	2,74
0(7)	1424 (2)	8272 (4)	9037 (5)	2,65

Tableau 4. Paramètres des positions atomiques (×104) et B_{eq} de Te(OH)₆.Na₂HPO₄.H₂O

En raison de la propriété du groupe $P6_3$ d'être glissant suivant z, la cote z de l'atome O(1) a été maintenue constante durant les affinements.

	x	У	Z	$B_{ m \acute{e}q}$ (Å ²)
Te	$\frac{1}{2}$	2	8 (1)	0,81
Р	Ó	Ŏ	2334 (2)	0,93
Na(1)	$\frac{1}{2}$	2	4604 (3)	1,60
Na(2)	2	1	1820 (3)	1,67
où	2747 (4)	1986 (4)	2677 (0)	1,32
O(2)	356 (4)	4368 (4)	727 (2)	1,26
O(3)	3831 (4)	727 (4)	4317 (2)	1,47
Q(4)	0	0	1316 (3)	1,22
O(w)	$\frac{1}{3}$	$\frac{2}{3}$	2957 (5)	1,67

Fig. 1. Projection de l'arrangement atomique de $Te(OH)_6$. 2(NH₄), HPO₄ sur le plan ab.

^{*} Les listes des facteurs de structure, des paramètres thermiques anisotropes et des longueurs des axes principaux des ellipsoïdes de vibration thermique et leur orientation par rapport aux axes cristallographiques ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 34311: 54 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Tableau 5. Principales distances interatomiques (Å) et angles de liaison (°) dans les anions TeO_6 et PO_4 de $Te(OH)_6.2(NH_4)_2HPO_4$

Tétraèdre PC) ₄			
Р	O(1)	O(2)	O(3)	O(4)
O(1)	<u>1,527 (2)</u>	2,542 (3)) 2,474 (3)	2,545 (3)
O(2)	112,9 (1)	1,524 (2)) 2,519 (3)	2,522 (3)
O(3)	104,5 (1)	107,4 (1)	1,601 (3)	2,530 (4)
O(4)	112,6 (1)	111,2 (1)	107,7 (1)	1,532 (2)
Polyèdre NH	l₄(1)–O			
$NH_4(1) - O(2)$	2,762 (3	3)	NH₄(1)–O(5)	2,839 (3)
NH ₄ (1)-O(3) 2,968 (4	4)	NH₄(1)–O(6)	2,955 (4)
$NH_{4}(1) - O(4)$) 2,843 (2	3)	NH₄(1)–O(7)	3,082 (4)
Polyèdre NH	₄(2)—O			
$NH_4(2)-O(2)$	2,887 (4	4)	NH ₄ (2)–O(4)	2,877 (4)
NH₄(2)–O(2	2,800 (.	3)	NH ₄ (2)–O(6)	3,239 (3)
$NH_4(2) - O(3)$	5) 3,259 (3	3)	NH₄(2)–O(7)	2,972 (3)
Octaèdre TeO	D ₆			
Te-O(5)	1,904 (3)	(×2)	O(5)-Te- $O(5)$	180
Te-O(6)	1,916 (2)	(×2)	O(6)-Te-O(6)	180
Te-O(7)	1,919 (2)	(×2)	O(7) - Te - O(7)	180
O(5)–O(6)	2,684 (3)		O(5)-Te-O(6)	89,3 (1)
O(5)–O(6)	2,718 (4)		O(5)-Te-O(6)	90,7 (1)
O(5)–O(7)	2,711 (4)		O(5)-Te-O(7)	89,7 (1)
O(5) - O(7)	2,696 (5)		O(5)-Te-O(7)	90,3 (1)
O(6) = O(7)	2,659 (3)		O(6) - Te - O(7)	87,8 (1)
U(0) = U(1)	2,764 (3)		U(0) - 1e - U(7)	92,1 (1)

Les atomes d'ammonium entourés chacun par six atomes d'oxygène font le lien entre les octaèdres TeO_6 et les tétraèdres PO_4 .

 $Te(OH)_6$. Na₂HPO₄. H₂O. La Fig. 2 donne une vue d'ensemble de la structure. La Fig. 3 est une projection sur le plan *ab* des tétraèdres PO₄ et des octaèdres TeO₆.

Les atomes de phosphore étant placés sur les axes 6_3 les tétraèdres PO₄, presque réguliers, possèdent la symétrie ternaire. Les atomes de tellure occupent la position spéciale 2(b), sur les axes 3. Ils ont également dans ce sel un voisinage octaédrique. Les tétraèdres PO₄ forment des plans alternant avec des plans d'octaèdres TeO₆, perpendiculairement à c, à des distances voisines de c/4, c'est-à-dire 3,75 Å.

Sont également en positions 2(b), les atomes de sodium et la molécule d'eau O(w). L'atome Na(1)

Fig. 3. Représentation des tétraèdres PO_4 et des octaèdres TeO_6 en projection sur le plan *ab*.

Tableau 6. Principales distances interatomiques (Å) et angles de liaison (°) dans les anions TeO₆ et PO₄ de Te(OH)₆. Na₂HPO₄. H₂O

Tétraèdre PO₄			
P-O(1)	1,541 (2) (×3)	O(1)–O(1)	2,514 (3)
P-O(4)	1,537 (5)	O(1)–O(4)	2,516 (4)
	O(1)-P-O(1)	109,29 (9)	
	∩ (1)− P − O (4)	109,65 (9)	
Octaèdre TeO ₆			
	Te-O(2)	1,931 (2) (×3)	
	Te-O(3)	1,910 (3) (×3)	
O(2)-Te-O(2) 91,5 (1)	O(2)–O(2)	2,766 (5)
O(3)-Te-O(3)) 93,0 (1)	O(2)-O(3)	2,772 (4)
O(2)-Te-O(3)) 92,4 (1)	O(2)–O(3)	2,557 (4)
O(2)-Te-O(3)) 83,5 (1)	O(3)–O(3)	2,771 (5)
O(2)-Te- $O(3)$) 173,7 (1)		
Environnement	des atomes de sodi	ium	
Na(1)–O(2)	2,583 (4) (×3)	Na(2) - O(1)	2,415 (3) (×3)
Na(1)–O(3)	2,336 (3) (×3)	Na(2) - O(2)	2,552 (4) (×3)
Na(1)-O(w)	2,487 (9)		
Environnement	de O(w)		
	$\alpha(\lambda) \alpha(\lambda)$		

O(w) - O(1)	2,644 (6) (×3)
O(w)-O(3)	3,081 (6) (×3)

Fig. 2. Vue d'ensemble en perspective de la structure de $Te(OH)_6$. Na₂HPO₄. H₂O.

possède un voisinage constitué par six atomes d'oxygène appartenant à trois octaèdres TeO_6 et par la molécule d'eau O(w).

L'atome Na(2) est entouré seulement de six atomes d'oxygène, provenant par moitié des octaèdres TeO_6 et des tétraèdres PO_4 .

Le Tableau 6 donne les principales distances interatomiques et angles de liaison.

La présence d'une molécule d'eau sur un axe ternaire pose un problème en ce qui concerne une localisation éventuelle des protons de cette molécule. La présence à proximité de cette dernière de groupements HPO_4 suggère la possibilité de l'existence d'un groupement hydronium H_3O^+ . Dans cette hypothèse, les trois atomes d'oxygène O(1) distants de 2,64 Å de cette molécule d'eau seraient reliés à cette dernière par deux liaisons hydrogène provenant des protons de la molécule d'eau, la dernière liaison étant assurée par le proton du groupement HPO₄. Un essai de localisation des protons par minimisation d'énergie (Tordjman, 1979) conduit à leur attribuer une position générale 6(c) en x = 0,186, y = 0,682, z = 0,277. Dans cette configuration, on observe les distances suivantes: H-O(w) = 0,96, H-O(1) = 1,70 Å, avec des angles O(1)-H-O(w) = 167 et H-O(w)-H = 112°. Une étude par diffraction de neutrons est envisagée pour vérifier cette hypothèse.

Références

PREWITT, C. T. (1966). SFLS5. A Fortran IV Full-Matrix Crystallographic Least-Squares Program.

patterns and single-crystal precession photographs.

TORDJMAN, I. (1979). J. Appl. Cryst. 12. A paraître.

Acta Cryst. (1979). B35, 1447-1450

Structures of Ta₃As and (Nb,Ta)₃As*

BY YU WANG, L. D. CALVERT, † E. J. GABE AND J. B. TAYLOR

Chemistry Division, National Research Council of Canada, Ottawa K1A 0R9, Canada

(Received 11 October 1978; accepted 23 February 1979)

Abstract. Ta₃As (a new structure type), monoclinic, B2/b, a = 14.6773 (6), b = 14.5505 (4), c = 5.0954 (2) Å, $\gamma = 90.572$ (3)°, Z = 16; a full-matrix least-squares refinement gave R = 0.081 for 2440 observed *hkl*, using graphite-monochromated Mo radiation ($\lambda \alpha_1 = 0.70932$ Å). One (Nb,Ta)₃As crystal, $P4_2/n$, a = 10.308 (1), c = 5.148 (1) Å, Z = 8, had the Ti₃P-type structure; a refinement on a twin-type model gave R = 0.072 for 3709 observed *hkl*. Both structures contain [As M_{10}] bicapped square antiprism units with average interatomic distances for Ta₃As and (Nb,Ta)₃As of M-M = 3.12 and 3.13 Å, M-As =2.74 and 2.74 Å and As-As = 3.87 and 3.92 Å respectively. Ta₃As is an ordered variant of Nb₃As.

Introduction. Ta₃As and Nb₃As were reported to have the Ti₃P structure by Ganglberger, Nowotny & Benesovsky (1966). This was confirmed for Nb₃As by Rundqvist, Carlsson & Pontchour (1969) but they suggested the Fe₃P or α -V₃S structure for Ta₃As and, in addition, found some of the lines in Ta₃As powder patterns split or broadened, but were unable to obtain single crystals. Ta₃As was characterized as monoclinic with a new structure type by Murray, Taylor, Calvert, Wang, Gabe & Despault (1976) on the basis of powder Their powder patterns were not identical for all samples and their single crystals were twinned or of poor quality. Single-crystal studies were undertaken in an attempt to clarify these discrepancies. Many apparently good single crystals grown by iodide transport in tantalum crucibles (Murray et al., 1976) were examined by Laue photographs and found to be twinned, *i.e.* Laue ellipses were doubled. The first good crystal found was mounted on a four-circle computer-controlled diffractometer. The symmetry was found to be tetragonal, not monoclinic as expected, with reflection conditions 00l, l = 2n and hk0, h + k = 2n and a c axis of 5.148 Å, intermediate between those of Ta_3As (5.0954 Å) and Nb₃As (5.189 Å; Waterstrat, Yvon, Flack & Parthé, 1975). Cell parameters were obtained by centring reflections with $\theta > 60^{\circ}$ (Table 1). The Ta used in preparing these specimens was later found to have contained ~1% Nb. Intensities were measured (Table 1) using local programs (for details see Wang, Gabe, Calvert & Taylor, 1976a) and corrected for Lorentz, polarization and absorption effects. Because the composition was not certain the absorption coefficient was an experimental value. Intensities were measured at 10° intervals as the crystal was rotated around the diffraction vector ($0 < \psi < 180^\circ$) for several reflections and the appropriate absorption corrections were calculated with different values of μ_{l} .

^{*} NRCC No. 17332.

[†] To whom correspondence should be addressed.